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Abstract
We examine a class of previously derived integrable mappings which do
not belong to the QRT family and show that they can be extended to non-
autonomous forms without loss of the integrable character. We derive more
non-QRT integrable mappings, obtain their non-autonomous forms and show
how they can be integrated.

PACS numbers: 02.30.Ik, 02.40.Xx

1. Introduction

Integrable second-order mappings constitute an excellent example of sustained progress.
While a quarter of a century ago just a handful of such integrable systems could be exhibited,
we are today in a situation of abundance, thanks to the concentrated efforts of several teams
all over the world. Foremost among these integrable second-order systems are the mappings
belonging to the QRT family [1]. Starting from specific integrable mappings obtained from
reductions of integrable differential-difference systems, Quispel, Roberts and Thomson (QRT)
were led to the proposal of a five-parameter family of second-order mappings of the form

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
, (1.1)

where the fi are specific polynomials of order not higher than 4. This, so-called symmetric,
QRT mapping possesses an invariant of the form:

(α0 + Kα1)x
2
n+1x

2
n + (β0 + Kβ1)xn+1xn(xn+1 + xn) + (γ0 + Kγ1)

(
x2

n+1 + x2
n

)
+ (ε0 + Kε1)xn+1xn + (ζ0 + Kζ1)(xn+1 + xn) + (κ0 + Kκ1) = 0, (1.2)

where K plays the role of the integration constant. Moreover, it was shown that the solution
of the mapping can be expressed in terms of elliptic functions, of which it is a sampling over a
discrete, equidistant set of points. A generalization of the mapping (1.1) to an eight-parameter
one was proposed by QRT under the name ‘asymmetric’. It is a system of two first-order
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mappings and possesses an invariant which is a ratio of two biquadratic polynomials. Its
integration in terms of elliptic functions was given in [2, 3].

An interesting question is whether there exist integrable second-order mappings not
belonging to the QRT parametrization. As a matter of fact, several such examples do exist.
A family of such mappings is the one discovered by Hirota, Kimura and Yahagi (HKY) [4]
who, while investigating third-order mappings obtained systems which could be integrated
to second-order mappings with biquartic invariants. Several more such mappings were
discovered in [5]. They were obtained through the procedure of appropriate autonomization
of the discrete Painlevé equations. As an illustration, we start from the q-PV which was
introduced in [6]:

ynyn−1 = (xn − aqn)(xn − bqn)

1 − pxn

(1.3a)

xn+1xn = (yn − cqn)(yn − dqn)

1 − ryn

(1.3b)

with the constraint cd = qab. We consider an autonomous reduction with q = −1, which
imposes a + b = c + d = 0, and c2 = −a2. Moreover, we take p = 1, r = i and rescale y as
y → −iy. We find

ynyn−1 = x2
n − a2

xn − 1
(1.4a)

xn+1xn = y2
n − a2

yn − 1
. (1.4b)

From (1.4), we can obtain the symmetric reduction, identifying yn−1 = X2n−1, xn = X2n,
yn = X2n+1, etc and demanding that (1.4b) be just the upshift of (1.4a). Denoting, for
simplicity, the new variable by x rather than X leads to the symmetric, one-component, form
of this mapping:

xn+1xn−1 = x2
n − a2

xn − 1
. (1.5)

The invariant for (1.5) is simply

K = x2
nx

2
n+1(xn − xn+1)

2 − 2xnxn+1(xn + xn+1)((xn − xn+1)
2 − a2) +

(
x2

n + x2
n+1 − a2

)2

x2
nx

2
n+1

.

(1.6)

More examples of HKY-type mappings were discovered in [7, 8].
At this point, one may wonder whether the integration of the mappings of the HKY

family is different from that of QRT mappings. In [9], we have shown that this is not so.
The integration of HKY-type mappings follows the general procedure for the integration of
integrable mappings in the plane. One starts from the invariant curve, i.e. an invariant such as
(1.2) where we put xn → x and xn+1 → y. Since the mapping is generically an automorphism
of infinite order, one expects the invariant curve to be of genus 0 or 1. (The genus can be
computed algorithmically following the procedure proposed by van Hoeij [10].) If the genus
is 1, the curve is birationally equivalent to a curve of the form

v2 − 4u3 + αu + β = 0. (1.7)

The precise method for the construction of the canonical form follows again the method
proposed by van Hoeij. One chooses a point x, y which in turns fixes the value of K.
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Then one algorithmically constructs u(x, y) and v(x, y) which satisfy the canonical relation
v2 − 4u3 + αu + β = 0. This last relation is parametrized in terms of the Weierstraß elliptic
function u = ℘ and its derivative v = ℘ ′. The action of the initial mapping interpreted at the
level of the canonical form (1.7) is just a shift from ℘(z) to ℘(z + δ) (where the step δ is not
curve-independent). Once the solution of (1.7) in terms of elliptic functions is given, one can
construct the parametrization of the initial curve using the inverse transformation x = x(u, v),
y = y(u, v). It is obvious that this construction may be particularly cumbersome and is not
global in the sense that it must be carried out for fixed value of the invariant K. Still, in some
deep sense, the integrability of the HKY-type mappings is not fundamentally different of that
of the mappings of the QRT family.

One of the most interesting aspects of the QRT mappings is that they can be extended
to non-autonomous forms, i.e. systems where the independent variable appears explicitly in
the coefficients. This deautonomization of the QRT mappings has led to the discovery of the
discrete analogues of the Painlevé equations and spurred a whole new direction of research.
It is thus natural to ask whether non-QRT mappings are also amenable to deautonomization.
As far as the mappings obtained in [5] by ‘autonomizing’ discrete Painlevé equations are
concerned, the answer is obviously trivial. However, since more examples of integrable
non-QRT mappings than those of [5] are known, the possibility of nontrivial integrable
deautonomization does exist. In what follows we shall address this precise question. In
section 2, we shall show how one can deautonomize some HKY-type mappings obtained in
[8]. Section 3 will be devoted to the construction of a new class of non-QRT mappings for
which we shall produce non-autonomous forms before proceeding to their integration.

2. Integrable mappings of non-QRT type

In [8] we examined, from the point of view of integrability, a family of mappings which were
by construction of non-QRT type. The general expression of those mappings is

xn+1 = xn−1
P(xn)

Q(xn)
, (2.1)

where P and Q are polynomials. Our approach was to postulate a form for P, Q and single out
the integrable cases through the application of integrability criteria like singularity confinement
[11] and algebraic entropy [12]. Two cases were separately investigated, that of linear P and
Q and that of quadratic ones. In the linear case, we found that the following mapping

xn+1 = xn−1
b

a

xn − b

xn − a
(2.2)

had zero algebraic entropy with linear degree growth of the iterates. This, as explained in
[13], is an indication that the mapping is linearizable. Its explicit linearization was indeed
presented in [8].

A second linearizable mapping was also identified in [8]:

xn+1 = xn−1
a2

b2

xn − b

xn − a
. (2.3)

However, this is not really different from (2.1). In fact it suffices to invert x, a and b and then
exchange a and b in order to obtain (2.3) starting from (2.2).

The case of quadratic P and Q gave more interesting results. In fact, starting from the
mapping

xn+1 = xn−1 a
(xn − b)(xn − c)

(xn − d)(xn − f )
, (2.4)
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we were able to identify three integrable cases with the following canonical forms:

xn+1 = −xn−1
(xn − α)(xn − 1/α)

(xn + α)(xn + 1/α)
(2.5)

xn+1 = i xn−1
(xn + iα)(xn + i/α)

(xn + α)(xn + 1/α)
(2.6)

xn+1 =
√

i xn−1
x2

n − i

x2
n − 1

. (2.7)

Their integrability was established by the explicit construction of the their invariants. In all
three cases, the invariants were ratios of polynomials of degree higher than 2, confirming the
HKY character of these mappings.

Before proceeding to the deautonomization of these mappings it is interesting to show
that the last two mappings are not independent. In fact (2.7) is related to a special case of
(2.6). It suffices indeed to introduce the simple folding transformation X = x2 and take the
square of (2.7). We find

Xn+1 = i Xn−1
(Xn − i)2

(Xn − 1)2
(2.8)

which is precisely (2.6) for α = −1.

3. Deautonomizing the non-QRT mappings

In [8] we have examined only autonomous mappings and obtained the integrable subcases.
In this section we are going to show that these mappings can be extended to non-autonomous
forms which are still integrable. We start with the linearizable mapping (2.2) which we write
in a slightly more general form as

xn+1 = xn−1 c
xn − b

xn − a
. (3.1)

Next we allow the quantities a, b and c to be functions of the independent variable n. We
recall here that since the mapping is linearizable, the singularity confinement criterion is
inapplicable. Hence, we apply the algebraic entropy integrability criterion. (We are not going
to enter into the technical details here; they are well documented in the literature.) We require
that the degree growth of the iterates of (3.1) be linear, so as to preserve the linearizable
character. We find that the only necessary constraint is a(n − 1)c(n) = b(n + 1) whereupon
the degrees of the iterates become 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . . We can now scale x so as to put
a to 1. The constraint becomes now b(n) = c(n − 1) and the mapping assumes the form

xn+1 = xn−1 cn

xn − cn−1

xn − 1
, (3.2)

where c is a free function of n. The linearization of (3.2) is straightforward. We first introduce
an auxiliary variable yn = (xn−1 − 1)(xn − cn−1). Expanding (3.2) and identifying terms, we
find that y satisfies the linear equation yn+1 −cnyn +cn(cn−1 −1) = 0. Thus, (3.2) is equivalent
to the system

yn+1 = cn(yn − cn−1 + 1) (3.3a)

xn = cn−1 +
yn

xn−1 − 1
, (3.3b)
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which is a special case of the Gambier mapping, introduced in [14]. Next we turn to the
deautonomization of (2.5) and (2.6). We start from the form (2.4) which contains the full
freedom and assume that all the parameters are functions of the independent variable n. First
we perform a gauge transformation on x so as to have a = 1. Thus, we shall work with the
mapping

xn+1 = xn−1
(xn − b)(xn − c)

(xn − d)(xn − f )
. (3.4)

In order to investigate the integrability of its non-autonomous form, we shall use the singularity
confinement criterion. Its application is straightforward and leads to the following constraints
on the coefficients

dn = bn+2 (3.5a)

fn = cn+2 (3.5b)

bnbn+1cn+1 = bn+4bn+3cn+3 (3.5c)

cnbn+1cn+1 = cn+4bn+3cn+3. (3.5d)

From the ratio of (3.5c) and (3.5d), we find that bn/cn = bn+4/cn+4 i.e. b/c is periodic with
period 4. We can now solve system (3.5) completely:

bn = pq(αn2+βn+γ )(−1)n+κin+θ(−i)n+λ(−1)n (3.6a)

cn = rq(αn2+βn+γ )(−1)n−κin−θ(−i)n−λ(−1)n (3.6b)

dn = pq(αn2+(4α+β)n+4α+2β+γ )(−1)n−κin−θ(−i)n+λ(−1)n (3.6c)

fn = rq(αn2+(4α+β)n+4α+2β+γ )(−1)n+κin+θ(−i)n−λ(−1)n . (3.6d)

We perform a new gauge in order to absorb the factor q(α(n2+2n+2)+β(n+1)+α+γ )(−1)n into x. The
equation now becomes

xn+1 = xn−1A
(xn − B)(xn − C)

(xn − D)(xn − F)
, (3.7)

where we have

An = q(4α(n+1)+2β)(−1)n (3.8a)

Bn = pq(−2α(n+1)−β)(−1)n+κin+θ(−i)n+λ(−1)n (3.8b)

Cn = rq(−2α(n+1)−β)(−1)n−κin−θ(−i)n−λ(−1)n (3.8c)

Dn = pq(2α(n+1)+β)(−1)n−κin−θ(−i)n+λ(−1)n (3.8d)

Fn = rq(2α(n+1)+β)(−1)n+κin+θ(−i)n−λ(−1)n . (3.8e)

Next we introduce new variables as follows:

x4k−1 = pr

y4k−1
(3.9a)

x4k = y4k (3.9b)

x4k+1 = y4k+1 (3.9c)

x4k+2 = pr

y4k+2
. (3.9d)

5
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We can now rewrite equation (3.7) in terms of the new variable. We find the general form

yn+1yn−1 = (yn − φn)(yn − χn)

(1 − yn/ψn)(1 − yn/ωn)
. (3.10)

So, with the change of variables (3.9), equation (3.4) has the same functional form as the
discrete Painlevé III and in fact given the structure of its parameters, it is precisely the equation
obtained by Jimbo and Sakai [15] as the discrete analogue of Painlevé VI. In order to show this
explicitly, we proceed to compute the expression of φ, χ,ψ, ω for n = 4k−1, 4k, 4k+1, 4k+2.
We will not go into these computational details but give directly the result. We find for
even n

φn = (pms)zn (3.11a)

χn = (r/ms)zn (3.11b)

ψn = (sp/m)z−1
n (3.11c)

ωn = (mr/s)z−1
n (3.11d)

while for odd n we have

φn = (pt/s)zn (3.12a)

χn = (rs/t)zn (3.12b)

ψn = (p/st)z−1
n (3.12c)

ωn = (rst)z−1
n , (3.12d)

where zn = q−2α(n+1)−β , m = qκ+θ , s = qλ and t = qi(κ−θ). Thus, (3.10) is exactly the
discrete q-PVI as we claimed, albeit in a slightly unusual form. In order to bring it in the more
familiar form, we introduce a final gauge and separate explicitly the variables corresponding
to even and odd indices. We have Yn = y2nz2n/

√
pr , Xn = y2n+1z2n+1/

√
pr which leads to

the equation

XnXn−1 = (Yn − νZn)(Yn − Zn/ν)

(1 − σYn)(1 − Yn/σ)
(3.13a)

Yn+1Yn = (Xn − μZ̃n)(Xn − Z̃n/μ)

(1 − ρXn)(1 − Xn/ρ)
, (3.13b)

where we have put μ = t
√

p/r/s, ν = ms
√

p/r , ρ = √
p/r/(st) and σ = s

√
p/r/m. The

independent variable enters through Zn = z2
2n and we have Z̃2

n = ZnZn+1. Equation (3.13) is
indeed the canonical form [16] of q-Painlevé VI.

4. New integrable non-QRT mappings

In the previous section, we dealt with mappings already analysed in [8]. However, they are
not the only ones of their kind. More integrable non-QRT mappings can be found. In this
section we will analyse two new types of mappings. Their forms are inspired by the canonical
forms of the QRT mapping twisted in the logic of [8]. We start with

xn+1 + xn

xn−1 + xn

= f
x2

n + axn + b

x2
n + cxn + d

. (4.1)

6
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The investigation of the integrability of (4.1) is carried out using the algebraic entropy criterion,
since we expect some integrable subcases to be linearizable. We will not present here the
details of this analysis but just the end result. We find that the only integrable case corresponds
to f = 1, c = −a and d = b. Its degree growth is 1, 2, 3, 4, 5, . . . and thus we expect the
mapping to be linearizable. Indeed by considering the Gambier mapping

yn+1 = yn + a (4.2a)

xn = b + ynxn−1

a − yn + xn−1
(4.2b)

and eliminating y, we recover the linearizable form of (4.1)

xn+1 + xn

xn−1 + xn

= x2
n + axn + b

x2
n − axn + b

. (4.3)

The mapping (4.3) possesses a transcendental conserved quantity. Indeed, from the solution
of (4.2a), we have that yn = na + y0 and thus tan(πyn/a) = const. Solving (4.2b) for y, we
find thus

tan

(
π

a

xnxn−1 + axn − b

xn + xn−1

)
= K. (4.4)

As a consequence of the linearizability, some of the parameters of (4.1) may be functions
of the independent variable. We are thus led to examine (4.1) afresh, keeping f = 1, but
allowing for some less stringent constraint on a, b, c, d. We require that the degree growth be
the same as in the autonomous case. We find now that the constraints on the parameters are
dn = bn−1 and cn = −an−1. In order to linearize the mapping, we consider now the Gambier
mapping

yn+1 = yn (4.5a)

xn = bn−1 + (yn − gn)xn−1

gn−1 − yn + xn−1
(4.5b)

and eliminating y we find

xn+1 + xn

xn−1 + xn

= x2
n + (gn − gn+1)xn + bn

x2
n + (gn − gn−1)xn + bn−1

, (4.6)

where we have introduced the auxiliary variable g through an = gn − gn+1.
The case where the polynomials in the numerator and denominator of the rhs of (4.1) are

linear is also interesting. We start from
xn+1 + xn

xn−1 + xn

= c
xn + a

xn + b
. (4.7)

The application of the algebraic entropy integrability criterion leads to c free while b = −a,
and the degree growth is the same a for (4.1). The extension to a nonautonomous case is
straightforward: a and c are free functions of the independent variable n. Thus, the linearizable
form of the mapping is

xn+1 + xn

xn−1 + xn

= c
xn + an

xn − an−1
. (4.8)

The linearization of (4.8) is given by the Gambier mapping

yn+1 = yn + gn+1 (4.9a)

7
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xn = gnan−1 + ynxn−1

gn − yn

. (4.9b)

Elimination of y leads to (4.8) with cn = −gn+1/gn. It is interesting to point out here that
even in the autonomous case of constant c, the corresponding Gambier mapping is explicitly
nonautonomous since in that case we have gn = g0(−c)n. We should also remark that
the linearizable case (4.8) can be obtained from (4.6) by taking x → 0 and an appropriate
redefinition of the auxiliary variables.

Next we analyze the mapping

xn+1xn − 1

xnxn−1 − 1
= f

x2
n + axn + b

x2
n + cxn + d

. (4.10)

Again we start with the purely autonomous case. We find that one linearizable case exists of
the form

xn+1xn − 1

xnxn−1 − 1
= λ2 x2

n + axn + 1/λ

x2
n + aλxn + λ

. (4.11)

Its linearization is given by the Gambier mapping

yn+1 = yn/λ (4.12a)

xn = λ
xn−1 + yn + a

λynxn−1 − 1
. (4.12b)

At this point, it is interesting to exhibit a case where (4.11) possesses a conserved quantity.
If we take λ as a root of unity, say λp = 1, then from (4.12a) we have y

p

n+1 = y
p
n . Solving

(4.12b) for y we have(
xn−1 + a + axn/λ

xnxn−1 − 1

)p

= K. (4.13)

Since p may be any integer, we have here an invariant of arbitrary degree.
In order to proceed to the deautonomization, it is preferable to start with the full freedom

of (4.10). We find again that the mapping is integrable in one linearizable case which has the
form

xn+1xn − 1

xnxn−1 − 1
= bn+1x

2
n + anxn + bn

bn−1x2
n + an−1xn + bn

. (4.14)

Its linearization is given by the Gambier mapping

yn+1 = yn (4.15a)

xn = bnxn−1 + yn + an−1

ynxn−1 − bn−1
. (4.15b)

Next we turn to the case where the right-hand side of (4.10) is not a ratio of quadratic but
rather of linear polynomials. Two cases can be distinguished here. The first corresponds to
a degenerate case of (4.14) where the numerator and denominator have one common factor.
This happens whenever a and b satisfy the constraint

(an − an−1)(an−1bn+1 − anbn−1) − bn(bn+1 − bn−1)
2 = 0 (4.16)

in which case (4.14) degenerates to

xn+1xn − 1

xnxn−1 − 1
= bn+1(an − an−1)xn + bn(bn+1 − bn−1)

bn−1(an − an−1)xn + bn(bn+1 − bn−1)
. (4.17)

8
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The autonomous limit of (4.17) can be easily obtained. We find that in this case, the constraint
is just a = ±(1 + λ) and the mapping becomes

xn+1xn − 1

xnxn−1 − 1
= 1 ± xnλ

1 ± xn/λ
. (4.18)

However, a second integrable case does exist which cannot be obtained from the quadratic one
through some limiting procedure. It has the autonomous form

xn+1xn − 1

xnxn−1 − 1
= 1 − axn

1 + axn

. (4.19)

The degree growth of the iterates of (4.19) is again linear, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . ., an
indication that this mapping should be linearizable. This turns out to be the case since (4.19)
is equivalent to the Gambier mapping

yn+1 + yn = 0 (4.20a)

xn = a + yn + xn−1

1 + axn−1
. (4.20b)

The deautonomization of (4.19) is straightforward. We find

xn+1xn − 1

xnxn−1 − 1
= 1 − anxn

1 + an+1xn

, (4.21)

where an is a free function of the independent variable. The associated Gambier mapping is
exactly (4.20) where a is now the function an and not simply a constant.

5. Conclusion

In this paper, we examined integrable second-order mappings which are not of QRT type.
First we have analysed mappings obtained in some previous publication [8] of two of the
present authors (in collaboration with Tsuda and Takenawa) and shown that they could be
extended to non-autonomous forms. The most interesting result was the deautonomization of
(3.4) which was shown to be a disguised version of the q-Painlevé VI equation of Jimbo and
Sakai [15]. Moreover, we extended the results of [8] by obtaining more cases of integrable
non-QRT systems. All these cases were shown to be linearizable and we provided their explicit
linearization in both the autonomous and non-autonomous case.

All the integrable mappings derived here as well as in [8] are of the form

xn+1 = f1(xn) − xn−1f2(xn)

f4(xn) − xn−1f3(xn)
, (5.1)

where the fi are polynomial. The QRT case corresponds to f4 = f2 with specific forms for
the fi. It would be interesting to classify all the integrable cases of (5.1) with the help of
integrability criteria. However, a brute force approach leads directly to prohibitively lengthy
calculations and thus analyses such as the one presented in this paper are useful in the sense
that they pave the way towards the classification of all integrable second-order mappings.
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